Bell Ringer - Solve the quadratic.

$$2x^2 - 6x = 36$$

Bell Ringer - Solve the quadratic.

$$2x^{2} - 6x = 36$$

$$2x^{3} - 6x - 36 = 0$$

$$2(x^{3} - 3x - 18) = 0$$

$$2(x^{3} - 6x - 18) = 0$$

Chapter 12-5 Pythagorean Theorem Notes

Pythagorean Theorem

- if given a right triangle exists, then $a^2 + b^2 = c^2$

Pythagorean Theorem Converse

- if given $a^2 + b^2 = c^2$, then a right triangle exists.

Applies only to right triangles.

Find the unknown measurement.

1)

$$a^{2} + b^{3} = c^{2}$$
 $8^{2} + 15^{3} = c^{3}$
 $64 + 225 = c^{3}$
 $289 = c^{3}$
 $17 = c$

Find the unknown measurement. Leave in simplified radical form.

Find the unknown measurement. Leave in simplified radical form.

$$a^{3} + b^{3} = c^{3}$$
 $a^{3} + b^{3} = 7^{3}$
 $4 + b^{3} = 49$
 $b^{3} = 45$
 $b = \sqrt{45}$
 $b = \sqrt{9.5}$
 $b = \sqrt{9.5}$

Find the measurement of each side.

3)

Find the measurement of each side.

Side measurements

$$x^{3} + (x+5)^{3} = (5\sqrt{5})^{3}$$
 $x^{3} + x^{3} + 10x + 35 = 135$
 $2x^{3} + 10x - 109 = 0$
 $2(x + 5x - 50) = 0$
 $2(x + 10)(x - 5) = 0$
 $2(x + 10)(x - 5) = 0$
 $2(x + 10)(x - 5) = 0$

Only 5 works as a solution.

4) Are 8, 10, and 13 possible side lengths of a right triangle?

4) Are 8, 10, and 13 possible side lengths of a right triangle?

Need to use the converse.

Does
$$a^{2} + b^{2} = c^{2}$$
.
 $8^{2} + 10^{3} \stackrel{?}{=} 13^{3}$
 $64 + 100 \stackrel{?}{=} 169$
 $164 \neq 169$

Not possible to make a right triangle with these side lengths.